Задание

Сегодня вы — молодой и амбициозный учёный, занимающийся разработкой нового вида металла: суперпрочной стали.

Ваша миссия— создать инновационный материал, обладающий высокой степенью огнестойкости, хладостойкости и прочности, и который можно будет использовать в различных отраслях: начиная от строительства и машиностроения, заканчивая энергетикой.

Вам предстоит исследовать различные химические соединения, структуры и методы обработки, чтобы достичь желаемых свойств материала.

Удачи в вашем научном путешествии! Ваши открытия могут сделать важный вклад в индустрию и науку.

Часть 1. Разработка материала

Задание 1. Определение свойств

Ваше первое задание — определить, какие качества мы будем учитывать при разработке металла для строительства домов.

Как пройти это задание?

Откройте и изучите все свойства, чтобы выбрать подходящие. Обратите внимание на характеристики в левой части экрана — именно их нужно обязательно учесть при разработке.

Когда вы откроете все карточки, станет доступна кнопка «Подтвердить». Нажмите на неё в тех вариантах, которые помогут новому металлу сохранять свойства **при высоких температурах, сильном морозе и воздействии внешних сил.**

Как только вы найдёте все три правильных ответа, сможете перейти дальше.

Задание 2. Подбор элементов

Металлы бывают в чистом виде, то есть без примесей, например, золото высшей пробы, или в виде сплавов. Любой сплав — это определённый набор металлов и других химических элементов в разных пропорциях. Например, сталью называют сплав железа с углеродом, в котором также может быть незначительный набор каких-либо примесей (сера, фосфор, кремний и др.)

Но примеси могут ухудшить сталь, а вот чтобы улучшить её свойства, добавляют специальные элементы. Этот процесс называют легированием, а вводимые элементы — легирующими. Легирующие элементы становятся причиной более сложного взаимодействия компонентов стали, при этом образуются новые фазы и структуры.

Все эти элементы можно найти в таблице Менделеева. Задача материаловеда — подобрать нужный элемент в такой пропорции, чтобы наверняка улучшить конкретное свойство. Добавишь слишком мало — ничего не изменится. Переборщишь даже на половину процента от общего объёма — испортишь материал безвозвратно.

Кстати, про работу с легированной сталью можно узнать в онлайн-пробе по профессии «Металлург».

Как пройти это задание?

Вы будете по очереди подбирать элементы и их объём для каждой характеристики стали: огнестойкости, прочности и хладостойкости. Их названия написаны в верхней части экрана.

Выберите любой элемент в таблице, откройте его свойства (кнопка с замком) и решите, подойдёт ли он для улучшения материала. А затем подберите нужную долю этого элемента от общего объёма сплава, нажимая на кнопки с числами.

Обратите внимание: если вы находитесь на этапе с огнестойкостью, то нужно выбирать элементы, которые её повышают, а не понижают. И так для всех свойств.

Попробуйте пройти задание самостоятельно, но если возникают сложности, ниже мы приготовили для вас ответы.

• Огнестойкость:

а. Ниобий: 0.01% b. Бор: 0.0005%

с. Титан: не подходит

• Прочность:

а. Ванадий: 0,01%

b. Углерод: 0,1%

с. Сера: не подходит

• Хладостойкость:

а. Никель: 0,1%

b. Кобальт: 0,2%

с. Цирконий: 0,2%

d. Золото: не подходит

Надеемся, у вас всё получилось. Двигаемся дальше!

Часть 2. Испытания

Задание 1. Выбор способа испытаний

Материаловеды знают, какой физический параметр или величину нужно измерить, чтобы убедиться, что металл достиг нужных требований. Но иногда эти испытания выглядят удивительными и неочевидными для простых людей, не связанных с наукой.

Например, чтобы проверить сталь на хладостойкость, её недостаточно просто заморозить. На неё нужно как-то воздействовать, заставить треснуть, при этом измеряя конкретные величины. Сейчас вам нужно догадаться, о каких величинах и каких испытаниях идёт речь.

Вы ещё столкнётесь с подобными лабораторными испытаниями в университетах и колледжах, если решите связать свою жизнь с инженерией. А пока давайте выберем правильные ответы:

- 1. «Определяем предел текучести, разрывая металл при 600 °С и комнатной температуре». Речь идёт об огнестойкости! После верного выбора вы можете прочитать подробности об эксперименте во всплывающем окне.
- 2. «Определяем ударную вязкость, разбивая образец маятником». Это испытания на хладостойкость! Именно ударная вязкость расскажет материаловеду всё о влиянии низких температур.
- 3. «Вдавливаем в образец алмазную пирамидку и сравниваем диагональ отпечатков». Конечно, у нас осталась только прочность. Вернее, данным способом проверяют твёрдость, а это немного другое физическое свойство, но оно настолько тесно связано с прочностью, что специалист может получить из этих испытаний все нужные ему сведения. Подробнее читайте в окне после ответа.

Задание 2. Проведение испытаний

Это финальное задание пробы. Чтобы его выполнить, вам нужно воссоздать все лабораторные эксперименты и выбрать тот образец, который дойдёт до конца.

Огнестойкость

Напомним теорию. Чтобы проверить металл на огнестойкость, заготовки разрывают при 600 °C и при комнатной температуре. Датчики снимают величины предела текучести, и затем их делят один на другой. Именно так получают коэффициент термического разупрочнения.

Если он ниже 0,6 — образец не прошёл испытания. Это значит, что при высоких температурах металл теряет более 40% своей прочности и разрушается.

Сначала вам нужно посчитать недостающие значения коэффициентов. Это можно сделать в калькуляторе, расположенном под таблицей. Если формула на экране показалась слишком сложной, то ниже мы приводим правильные ответы:

Образец №3: 320 / 472 = 0,68 Образец №5: 200 / 450 = 0,44 Виртуальная профпроба. Материаловед. Справочник